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Abstract. In this contribution we report on the plastic crystal 1-chloroadamantane dynamics via conven-
tional frequency dependent (1H and 13C) and field cycling NMR measurements. A suitable microscopic
dynamical model, worked out from from X-ray analysis is developed and the molecular motions are inter-
preted in terms of: self diffusion and dipolar molecular axis combined with uniaxial rotation. In the rotator
phase the molecules execute a bimodal reorientation process whereas the uniaxial rotation solely persists in
the low temperature phase. In both phases, the residence times exhibit an Arrhenius temperature depen-
dence. The results confirm the existence of a dynamic crossover transition predicted by molecular dynamics
simulation.

PACS. 76.60.-k Nuclear magnetic resonance and relaxation – 61.50.-f Crystalline state – 76.60.Es Relax-
ation effects

1 Introduction

Molecular crystals made of globular molecules often ex-
hibit an orientationnally disordered or rotator phase com-
monly called plastic phase (PC) according to the origi-
nal definition of Timmermans [1]. For many years plastic
crystals have been studied, and particular attention was
focused on their polymorphism, structural and dynami-
cal properties [2–13]. Upon cooling, when the orientation-
nal ordering is avoided, some plastic crystals can freeze
into a glassy state [2–4]. Well-known examples are carbo-
ranes, cyclo-hexanol, ethanol and Cyano-Adamantane
(C10H15CN:CN-ADM) [4]. The supercooled plastic crys-
talline phase presents, as for glass forming liquids, dy-
namic and thermodynamic manifestations of a glass tran-
sition: the main relaxation (α process) is non-Arrhenius
and a steplike change in the heat capacity is observed
at the calorimetric glass transition. As a consequence,
since they involve only orientational degrees of freedom,
glassy crystals are considered as model systems for glass
transition investigations. Although most of the mono-
substituted adamantanes (C10H16: ADM) exhibit a rota-
tor phase, CN-ADM is, to our knowledge, the only ex-
ample giving rise to a glassy state. This peculiarity has
motivated numerous studies on this compound during the
last years [5–10]. From a dynamic point of view, the CN
substituent leads to an important activation energy of the
dipolar axis motion (α process) directly involved in the
glass transition mechanism.
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The main purpose of this work was to investigate the
dynamics of 1-chlorodamantane (C10H15Cl:CL-ADM).
This compound presents an orientationally disordered
phase (PC: phase I) of space group Fm3m [11]. CL-
ADM undergoes a solid-solid phase transition at Tt =
244.2 K (24.61 JK−1 mol−1) and melts at Tm = 442.5 K
(11.01 JK−1 mol−1) [13]. The low temperature phase
(phase II) is orientationally ordered (monoclinic) of space
group P21/c [12]. Molecular dynamic (MD) simulations
have revealed that some features of CL-ADM were con-
sistent with the mode coupling theory (MCT) [14]. A
crossover between two dynamical regimes at Tx = 330 K,
interpreted as a change in the energy landscape topogra-
phy was reported [9,15]. The precise nature of this tem-
perature, found above the critical temperature Tc corre-
sponding to an ergodic-nonergodic transition, remains un-
clear. Experimental extensions are needed to validate the
MCT picture. In CL-ADM, a wide frequency range inves-
tigation of the dynamics, particularly above Tx, is missing
and has motivated the present study by 1H and 13C NMR.
NMR is one of the most powerful method for dynamics in-
vestigations by means of relaxation rates measurements.
An alternative technique, Field Cycling NMR (FCNMR),
allowing low frequencies relaxation times measurements
over several decades was recently developed and applied
in various systems with complex dynamics [16]. This tech-
nique measure the spectral densities from T1z (ν) and is
consequently very efficient to detect multi modal processes
or dynamical heterogeneities. In plastic crystals, the ex-
perimental data can be analysis by a Frenkel model, orig-
inally developed by Virlet, Quiroga and Amoureux [17].
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Fig. 1. Second moment M2 of the proton NMR line versus
temperature. Dotted lines represent the calculated second mo-
ment for: rigid lattice (M2R), uniaxial rotation (M2U ) and
isotropic rotation (M2I). Inset: schematic representation of a
C10H15Cl molecule with the uniaxial rotation (τm12) and the
tumbling motion (τc3). Below Tt, where only uniaxial rotation
persists, the solid line is calculated by equation (19), using the
motional parameters τm3 given in Table 2.

The reliability of this model, based on the description of
a master equation using the group theory, has already
been demonstrated on Bicyclo-octane and some ADM
derivatives [18–20]. This formalism is presently applied to
CL-ADM.

The paper is organised as follows. The next section
presents the experimental details relevant to this study.
A description of the Frenkel model is given in Section 3.
The NMR results are presented and compared with those
obtained with other techniques in Section 4.

2 Experimental

CL-ADM was synthesized in our laboratory from ADM
(C10H16) by replacing one methine hydrogen by a chlorine
atom (inset of Fig. 1). High fields NMR experiments were
performed on Bruker wide-bore ASX spectrometers. 13C
measurements were carried out at 25 and 100 MHz using
simultaneously Magic Angle Spinning (MAS) at 3 KHz
and 1H decoupling (100 W) during acquisition. 1H exper-
iments were performed at 100, 200, and 400 MHz. Low
field NMR experiments were performed on a home build
spectrometer operating at 48 MHz. The proton second
moments M2 were obtained by a signal integration from
a C.W. VARIAN spectrometer operating at 15 MHz. The
proton spin-spin relaxation times T2 were measured with a
pulse-echo sequence at 100 MHz, T1z values with the mag-
netisation recovery pulse sequence (π, τ , π/2, D0)n, with
typically 16τ values and a recycle delay D0 > 5T1z. The
rotating frame spin-lattice relaxation time T1ρ was deter-
mined by locking the signal after a π/2 pulse with a π/2
phase-shifted pulse and then observing the signal intensity
as a function of the spin-locking pulse duration. A 18 G
field pulse (H1) was employed. The sample temperature
was varied from Tm to 120 K with an accuracy of ±1 K
with either precooled nitrogen or preheated air gas flows.

The experiments were carried out on powder samples in
glass tubes sealed under vacuum. The reproducibility of
the results was checked by recording the spectra during
cooling and heating cycles, in all cases the magnetisation
recoveries were found exponential. In the high tempera-
ture range, T1D measurements were performed at 100 MHz
by using the Jeener-Broekaert pulse sequence [21]:

[
(
π

2
)0◦ − t − (

π

4
)90◦ − τ − (

π

4
)90◦

]
.

The accuracy of the NMR data obtained under such ex-
perimental conditions lies between 5% for T1 and 15%
for M2.

Field Cycling NMR (FCNMR) measurements were
carried out with a Stelar Spinmaster FFC 2000 relax-
ometer (Stelar, Pv, Italy). The nuclear magnetic relax-
ation dispersion profiles T1z(ν) were measured from 0.1 to
15 MHz at 301, 333 and 353 K.

3 Models for NMR analysis

The general theory of magnetic dipole-dipole nuclear
spin relaxation has been treated in many standard
books [22,23]. Assuming a dipolar interaction mechanism,
the proton spin-lattice relaxation time is given by:

1
T1z

=
∑

i

Ci [J(ω, τi) + 4J(2ω, τi)] (1)

where Ci is the dipolar constant, ω is the Larmor fre-
quency and J(ω, τi) is the spectral density function de-
fined as the Fourier transform of an autocorrelation func-
tion G(t).

When the motion is considered as isotropic, the cor-
relation function corresponds to a single exponential
(G(t) ∝ e−t/τ ) and the spectral density turns out to be
Lorentzian (BPP model [24]):

J(ω, τ) = L(ω, τ) =
τ

1 + ω2τ2
. (2)

For plastic crystals, the existence of a crystal lattice im-
poses a limited number of molecular equilibrium posi-
tions. This Frenkel model, already described in refer-
ences [19,20], is based on the following hypothesis:

– all successive orientations are deduced from each other
by the symmetry operations of a rotational group,

– the jump times are negligible with respect to the resi-
dence times,

– two successive reorientations are completely uncorre-
lated,

– the probability for a particular reorientation to occur
is identical for all operations of the group belonging to
the same class (central force hypothesis).

In ADM, assuming molecular reorientations around fixed
(crystallographic) and mobile (molecular) axis, the cor-
relation functions for the O ⊗ Cn group are given for a
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Table 1. τα correlation times and ϕαcoefficients for CL-ADM
versus α according to references [19,20].

α 1 2 3 4 5 6
1

τα

1
τT

1
τT

+ 1
τr1

1
τT

+ 1
τr2

1
τE

1
τE

+ 1
τr1

1
τE

+ 1
τr2

ϕH
α 0 0.339 0.206 0.249 0 0.206

ϕCx
α 0 0.069 0.349 0.233 0 0.349

ϕCy
α 0 0.256 0.305 0.134 0 0.305

ϕCz
α 0 0.306 0.284 0.126 0 0.284

ϕC4
α 0 0.177 0.141 0.541 0 0.141

powder sample by:

G(t) =
6∑

α=1

ϕαe−
t

τα . (3)

The equilibrium positions and the molecular geometry are
taken into account by the ϕα terms as defined in Table 1a
of reference [19]. For ADM derivatives, we have derived
the 1H and 13C relaxation rates expressions:

1
T H

1z

=
2
3
M2(H)

6∑
α=1

ϕH
α [L(ωH , τα) + 4L(2ωH , τα)]

=
2
3
M2(H)

6∑
α=1

ΨH
α (4)

1
T H

1ρ

=
2
3
M2(H)

6∑
α=1

ϕH
α

[
3
2
L(2ω1, τα)

+
5
2
L(ωH , τα) + L(2ωH , τα)

]
(5)

1
T C

1z

=
2
3
M2(C)

6∑
α=1

ϕC
α

[
1
3
L(ωC − ωH , τα)

+L(ωC , τα) + 2L(ωC + ωH , τα)]

=
2
3
M2(C)

6∑
α=1

ΨC
α (6)

with: ωi = γi B0 (i =1H or 13C); ω1 = γHB1.
The second moments are given by the relations [22]:

M2(H) =
9
20

�
2γ4

H

∑
k �=1

r−6
k1 (7)

M2(Cm) =
9
20

�
2γ2

Cγ2
H

∑
k

r−6
km. (8)

The (k, l, m) indices describe the protons and carbons in
the molecule, the other symbols have their general mean-
ing [23].

For the symmetry group (O ⊗ Cn), we have ob-
tained [17–20,25]:

1
τE

=
1

τC4
+

1
τC2′

+
3

2τC3
(9)

1
τT

=
4

3τC4
+

2
3τC2′

+
1

τC3
+

4
3τC2.

(10)

The residence time τcβ (β = 2, 2’, 3, 4; c = cubic) repre-
sents the mean time an intra-molecular inter-nuclei vector
r spends before turning around any of the cubic axes be-
longing to the β class of the O group. The τmp residence
time represents the mean time this vector spends before
rotating by ±2π/p around the molecular axis. The decom-
position of τrq (q = 1, 2) versus τmp is given by [17–20,25]:

1
τrq

= 2
n∑
p

sin2
(
π q

p

)

τmp
(11)

where p is an integer dividing the order of the rotational
group. The τα decomposition is given in Table 1. The BPP
model (Eq. (1)), can be deduced from relations (4–6) by
taking: τα = τ (∀α).

In the following the correlation times τ are assumed to
follow an Arrhenius law:

τ(s) = τ0 e
E
T (12)

where E(K) the activation energy and τ0(s) the pre-
exponential factor are characteristic parameters of the mo-
tion.

3.1 Analysis of 1H data

In solids, molecular motions average the local field causing
line narrowing when frequencies exceed the NMR spectral
line width. In adamantanes the 1H NMR line is mainly de-
termined by dipolar interactions and the second moment
can be calculated (Eqs. (7,8); [22]). From the experimen-
tal CL-ADM second moment (M2; Fig. 1) and FID (T2;
Fig. 2) the following properties were established. In phase
I, the experimental M2 ≈ 0.75G2 is characteristic of fast
isotropic reorientations (Isotropic: M2I = 0.6G2); [26]).
Between 244 K and 150 K (phase II), the plateau of
M2 ≈ 5G2 corresponds to uniaxial rotation around the
threefold (C3) axis (Uniaxial: M2u = 5.4G2; [26]). Below
150 K, the line broadens and a rigid lattice value is reached
M2 ≈ 21G2 (Rigid: M2R = 23G2; [26]). At temperatures
above T ≈ 330 K an additional line narrowing occurs, the
resonance line shape becomes Lorentzian and M2 is no
longer defined.

The 1H relaxation times are represented in Figure 2,
versus reciprocal temperature. The T1ρ measurements are
performed in phase (II) and in the high temperature range
of phase (I), whereas T1z extends from 130 K up to the
vicinity of Tm. The dipolar relaxation time T1D, which
gives a description of very slow molecular motions, is only
measured in the plastic phase (I). To avoid effects due to
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Fig. 2. Variation of 1H NMR relaxation times versus
103/T (K): T1z (©) 48 MHz, (�) 100 MHz, (�) 200 MHz,
(�) 400 MHz; T1ρ (♦); T1D (�); T2 (•). The dotted lines
(T1ρ; T1D) describe the self diffusion mechanism fitted with
equations (14, 15). In phase I, the continuous curves represent
the best simultaneous fit obtained with a B.P.P. model and a
SD contribution (Eq. (17)). The corresponding parameters are
given in Tables 2 and 3.

phase transformation kinetics near Tt, the values in the
ordered phase are obtained after a long isotherm. Under
such conditions, both T1z and T2 exhibit discontinuities at
Tt. In phase (I) below Tx, from the second moment analy-
sis, fast motions are monitored by the Zeeman relaxation.
Under the extreme narrowing limit, a motional activation
energy is obtained: Ea = 4300 K. A change of Ea (4300 K
to 1400 K) is observed around Tx. The FCNMR profiles
(Fig. 3; T = 301, 333, 353 K) suggest the existence of two
relaxation modes in phase (I). At high frequency, as ex-
pected under a fast motion regime, T1z is constant. At low
frequency the T1z drop indicates the occurrence of a new
relaxation process. This drop shifts to higher frequencies
as the temperature increases thus reflecting a thermally
activated process.

3.1.1 Plastic phase

A quantitative analysis of the experimental data was per-
formed by assuming an isotropic molecular reorientation
(BPP model; [24]). An attempt to match all together the
experimental data (T < 400 K) using equation (1) is rep-
resented in Figure 2. The corresponding parameters are
given as τBPP in Table 2. At high temperature and be-
low Tx this model gives a good description of the data for
the low magnetic fields. For higher fields, discrepancies are
clearly observed below the T1z minima.

A different procedure for the interpretation of the
data consists to construct a master curve from measure-
ments taken at different Larmor frequencies [27]. This

Fig. 3. 1H FCNMR profiles taken at three temperatures in the
plastic phase: (�) 250 K, (�) 301 K, (•) 333 K, (�) 353 K.
The dashed lines represent the best fit to the experimental data
using equation (17). The solid curves represent T1z calculated
by assuming a Frenkel model (Eq. (4); Tab. 2).

Table 2. Dynamical parameters obtained by different tech-
niques for CL-ADM. The NMR parameters were obtained by
using a model assuming: (a) isotropic rotational diffusion, (b)
uniaxial rotation, (c) reorientations around molecular axis to-
gether with uniaxial rotation.

Phase τi τ0 (s) Ea (K) Technics

Plastic τBPP 0.44 × 10−16 4400 RMN (a)

τC3 0.76 × 10−16 4360 1H, 13C RMN (c)

′′ 2.6 × 10−15 3370 Dielectric [33]
′′ 10.9 × 10−15 2574 I.Q.N.S. [29]

τm12 0.19 × 10−15 2840 1H RMN (c)

′′ 0.51 × 10−12 1330 13C RMN (c)

′′ 12.3 × 10−15 1240 I.Q.N.S. [29]

Ordered τBPP 0.13 × 10−13 2890 1H RMN (a)

τm3 0.33 × 10−14 2860 1H, 13C RMN (b)

model free approach has proven to be efficient in poly-
mers analysis, even if the details of global motions can-
not be obtained [19,28]. In Figure 4a, we have plotted
log(ω0/T1(T )) versus log (ω0τc(T )), where τc(T ) is the
relevant correlation time. As seen in Figure 4a, several
relaxation modes contribution in the T1z NMR time win-
dow (10−8–10−12s) are observed. As a consequence an in-
terpretation based on a single correlation time may be
misleading.

We have then considered a Frenkel model assuming
π/6 rotations around the molecular C3 axis (τm12) and
the tumbling of this axis along the [100] lattice directions
(τc3) (Eqs. (4,5 [29,30])). The curves corresponding to the
best refinement (Tab. 2) are represented as solid lines in
Figures (3 and 5). Below Tx, this model allows an accu-
rate description of the experimental data for every studied
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Fig. 4. Superposition of relaxation rates as a function of the
reduced variable ω0τ (T ): (a) 1H at (©) 48 MHz, (�) 100 MHz,
(�) 200 MHz, (�) 400 MHz and (b) 13C at 25 and 50 MHz,
(•) C2, (�) C3, (�) C4

magnetic fields. Nevertheless, the experimental data above
Tx are not correctly reproduced.

In plastic crystals translational self diffusion (SD: τSD )
is known to give a significant relaxation mechanism, near
the melting point [2]. For a quantative analysis we have
used the Torrey’s isotropic random-walk model for self
diffusion on a face centered cubic (f.c.c.) lattice [2]:

(ω0τSD � 1):
1
T2

=
1

T1ρ
= 0.922M2τSD (13)

(ω0τSD � 1):
1

T1ρ
= 0.429

M2

ω2
1τSD

. (14)

Below the temperature of the T1D minimum and under
the conditions τSD � T2 and ω0τSD � 1, we have [2]:

1
T1D

=
2(1 − p)

τSD
. (15)

For a f.c.c. lattice, p = 0.2234 [2]. Using equations (13–15),
as seen in Figure 2, the experimental results are well de-
scribed by using the parameters of Table 3. The activa-
tion energy is consistent with other adamantanes deriva-
tives [2,10]. When approaching Tm, due to a sublimation
effect, the experimental T2 are somewhat smaller than
those predicted by equation (13). Using these parameters,
we tried to describe the data above Tx. The SD contribu-
tion to T1z is given by [2]:

1
T1z

= 2.29
M2

ω2
0τSD

. (16)

Table 3. Translational diffusion parameters obtained for CL-
ADM and ADM.

Compounds τ0 (s) Ea (K) Technics

CL-ADM 2 × 10−22 14570 NMR (this work)

ADM 1.6 × 10−21 18450 NMR [2,30]
4.6 × 10−20 16646 Radio Tracer [2]

Fig. 5. Variation of 1H NMR relaxation times versus
103/T (K): T1z: (©) 48 MHz, (�) 100 MHz), (�) 200 MHz),
(�) 400 MHz; T1ρ (♦). The continuous curves correspond to a
Frenkel model refinement (Eqs. (4, 5)).

The experimental data were calculated with the relation:

1
T1z

=
1

T Rot
1z

+
1

T SD
1z

. (17)

Using equation (17), we have calculated T1z with the BPP
parameters (Eq. (1); Table 2). Clearly the introduction of
the Self Diffusion mechanism, represented as a solid line
in Figure 2, failed to reproduce T1z above Tx. This re-
sult is consistent with the relaxation dispersion curves. At
T = 301 K and 250 K, the data are well described by the
parameters of Table 2 (solid lines; Fig. 3). At higher tem-
peratures and above ν0 = 5 MHz, the rotational contribu-
tion is too important (solid lines; Fig. 3) confirming the
occurrence of a dynamical change. From the best results
(Eqs. (16,17)) represented as dashed lines in Figure 3, we
have obtained: τSD = 5.6 × 10−4 s and 1.7 × 10−4 s at
T = 333 K and 353 K respectively.

3.1.2 Ordered phase

In the low temperature phase, the molecular motions are
investigated by proton T2, T1z (100, 200 MHz) and T1ρ

measurements (B1 = 18 G). At Tt, the freezing of the
dipolar axis motion results in an large decrease of T2 and
T1z. As seen in Figure 2, the phase transition prevents the
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T1z minimum of phase (II) to be observed. In the ordered
phase, T2 is approximatively constant above T = 140 K,
with a limiting value consistent with the relation [22]:

T2 =
1

(γ2
HM2R)

= 8.36 × 10−6s. (18)

The long correlation time approximation is valid since the
T1z data are proportional to B2

0 . A T1ρ inimum is ob-
served at T ≈ 158 K (T1ρ2.4 × 10−4s) and the relaxation
curve displays the classical V-shape temperature depen-
dence predicted by the BPP theory (Ea = 2800 K). An
attempt to match the experimental data using equation
(1) is represented in Figure 2 (Table 2, τBPP ). As seen
in this figure, this model is well adapted for T1z, but T1ρ

is not perfectly reproduced. The experimental data were
then fitted by using equation (4), considering a 3-fold uni-
axial rotation (τm3) and assuming that the ϕi terms re-
main equal to their values of Table 1. As seen in Figure 5,
a good description is obtained with the parameters of Ta-
ble 2.

In phase II, the calculated second moment are given
as a solid line in Figure 1, using the approximate expres-
sion [22,31,32]:

M exp
2 = M2 + (M2R − M2)

2
π

tan−1(γ2
HM

1
2
2 τ). (19)

4 Analysis of 13C data

The 13C experimental results (25 and 100 MHz) are rep-
resented in Figure 6 for: C1(C-Cl), C2(CH2), C3(CH) and
C4(CH2), referred according to their distances to the chlo-
rine atom (see inset of Fig. 6). As for 1H experiments,
a change of Ea is observed around Tx. Below Tx we
have obtained: EC1 ≈ 2400 K, EC2 ≈ EC3 ≈ 2900 K,
EC4 ≈ 3250 K. Under the hypothesis of an isotropic
model, we should observe: T C2

1z ≈ 0.63 T C3
1z ≈ T C4

1z ,
whereas at T = 300 K the experimental T C

1z are related
together by the relation: T C2

1z ≈ 0.58 T C3
1z ≈ 3.06 T C4

1z .
From these considerations, a BPP model is unable to de-
scribe the 13C relaxation rates. With a Frenkel model we
have obtained a good description of the experimental data
with the parameters given in Table 2 (Fig. 6). In Fig-
ure 7, we have represented at T = 250 K the calculated
Ψα (Eqs. (5, 6)). The main contribution arises from the
term Ψ4 (≈ Ψtotal). As Ψ4 depends linearly of τc3 (Tab. 1),
the dipolar axis motion gives the main contribution to the
relaxation both in 13C and 1H. However for C2 and C3, a
second contribution arises from the term Ψ2 which intro-
duces the uniaxial rotation. This explains the differences
between the activation energies measured directly from
the slope of the relaxation curves.

In the frame of a Frenkel model, the T C
1z ratio can

be calculated from Equation (6). By assuming α = 2, 4,
we have obtained: T C2

1z ≈ 0.57 T C3
1z ≈ 2.95 T C4

1z . Below Tx,
this relation is fully consistent with the experimental data.
Upon increasing the temperature this ratio increases, re-
flecting a progressive evolution from an anisotropic be-
haviour to a quasi free isotropic process (inset of Fig. 6).

Fig. 6. NMR 13C relaxation data at 25 and 100 MHz: (©) C1,
(•) C2, (�) C3, (�) C4. The continuous curves correspond to
the refinement carried out using a Frenkel model (Eq. (6)).
Inset: ratio T1(C4)/T1(C2) versus 1000/T (K). Indexation of
the different carbons of a CL-ADM molecule is displayed on
the figure. Below Tt = 250 K, (phase II), several temperatures
were investigated at 25 MHz.

In phase II, only several temperatures were investi-
gated at 25 MHz (Fig. 6). The phase transition results in
an important decrease of T C

1z, with: T C4
1z ≈ T C3

1z ≈ 1.9 T C2
1z .

From equation (10) we have obtained the following re-
lations which are fully consistent with the experimental
data:

T C4
1z

T C3
1z

≈ 0.8;
T C4

1z

T C2
1z

≈ 1.9;
T C3

1z

T C2
1z

≈ 1.6. (20)

Consequently, another interesting feature of the Frenkel
model concerns the possibility to account for the dynami-
cal changes observed at the ordered-disordered phase tran-
sition.

5 Discussion

Frequency dependent NMR measurements is a power-
ful tool for molecular dynamics investigation. However,
the task of finding a motional model for the description
of NMR relaxation times variations is not easy. Usually
a BPP expression of the correlation functions is used.
This model, originally developed for liquids, ignores the
physical peculiarities of solids such as molecular equi-
librium positions. Consequently only a mean residence
time is measured and the description of multi frequen-
cies measurements is generally impossible. Using a Frenkel
model, resulting from X-ray analysis, a much better un-
derstanding of the dynamics can be achieved. Moreover
this model is suitable for explaining 13C relaxation rates,
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Fig. 7. Frequency dependence of Ψι=2;4(ω) at T = 250 K for
protons (H) and carbons (C4, C3, C2) calculated for the rota-
tional motions by using a Frenkel model. The full lines corre-
spond to ΨTotal(ω) and arrows delimit the frequencies domain
of NMR measurements used in this work.

which probes intramolecular interaction, above and be-
low an ordered-disordered phase transition. In accordance
with previous analysis of the PC phase, we have found
that the NMR results are well fitted by assuming that the
molecules exhibit a uniaxial rotation around the symmetry
axis, this axis reorienting itself via 90◦ jumps. This latter
motion is locked at the phase transition. In Figure 8, we
have compared the time constants obtained by NMR to
other methods: neutron scattering (IQNS; [15,29]) and di-
electric relaxation [33]. All together, a good agreement is
observed between these different technics, and the temper-
ature dependence of the residence times is found Arrhe-
nius like. However, contrary to our results, IQNS predicts
a T1z minimum connected to the uniaxial rotation below
T = 125 K. This discrepancy can be explained by the de-
convolution procedure used in IQNS [29]. At Tt the dipolar
axis motion is still fast: τc3 = 4 × 10−9 s. This very fast
dynamic explains the impossibility for CL-ADM to reach
a glassy state. Below Tx, the residence times (τc3,τm12) are
well separated in time and we found Ea(τc)/Ea(τm) = 1.5
instead of 4.6 for CN-ADM. However the global motion of
CL-ADM cannot be considered as isotropic below Tx (in-
set of Fig. 6). The plastic phase of CL-ADM exhibits a dy-
namic disorder intermediate between CN-ADM where the
motions are decoupled and fluoroadamantane (or ADM)
where the motions are quasi-isotropic [9,19]. These behav-

Fig. 8. Arrhenius diagram of the residence times measured
on CL-ADM (Tabs. 2 and 3), by dielectric relaxation (solid
line; [33]), IQNS (dotted lines; [29]), FCNMR (τSD : •), and
NMR (rotational: dashed lines; self-diffusion: dashed-dotted
lines). The dynamic crossover region is delimited by a hatched
zone.

iors are correlated to steric hindrance resulting in differ-
ent form of cooperativity which are the fundamental as-
pect of molecular reorientations in PC. A confrontation of
different plastic crystals, analysed with the BPP models,
shows that τ(Tm) ≈ 10−12 s [2]. 1-adamantanes deriva-
tives generally conform to this trend. As seen in Figure 8,
for CL-ADM this value is reached close to the temper-
ature Tx, where MD simulations predicted a change in
the rotational dynamics [9]. This dynamical change, in
the pico-nanosecond regime, has already been observed
by Raman [34] and neutron spin-echo experiments [15].
An anomaly in the heat capacity observed in this temper-
ature range support this hypothesis [35]. From T1D (T1ρ)
and FCNMR measurements, we have characterized the
self diffusion mechanism and we have shown that SD in-
fluence T1z around T ≈ 400 K i.e 50 K above Tx. Thus
this mechanism has to be discarded from the origin of the
breakdown observed. This leads us to distinguish two dis-
tinct dynamical domains: below Tx where the NMR data
are well described by a Frenkel model, and above Tx where
this model becomes inadapted. As a consequence we ex-
pect that some hypothesis of the Frenkel model, in partic-
ular the finite number of equilibrium positions, becomes
irrelevant at high temperature. Upon decreasing the tem-
perature the dynamic turns from a liquid-like dynamics to
a jumplike motion between preferential orientations.

These results call for new investigations of plastic crys-
tals in order to confirm the existence of two distinct dy-
namical regimes i.e an evolution from a quasi-free ro-
tational diffusion to activated gear tumblings motion at
some critical temperature Tx.
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6 Conclusion

We have presented an analysis of the dynamical proper-
ties of the molecular crystal 1-chloroadamantane using
13C and 1H NMR relaxation times measurements. By
conventional and field-cycling NMR we have covered a
broad Larmor frequencies domain ranging from 0.1 MHz
to 400 MHz. In order to disentangle the different dynami-
cal contributions to the NMR relaxation pattern, we have
calculated the spectral densities adapted to the molecu-
lar symmetry of CL-ADM (Frenkel model). This model is
useful, particularly for rigid molecules such as plastic crys-
tals for which a precise knowledge of the structural prop-
erties is possible. Using this model, the dynamic disorder
of CL-ADM has been characterized over a wide temper-
ature range. While rotational motions controlled the re-
laxation rates at lower temperatures, we have shown that
an additional self-diffusion mechanism plays an important
role close to Tm. The characteristic times of this slow mo-
tion have been determined by a combination of dipolar re-
laxation (T1D) and field-cycling measurements. However
this latter mechanism is unable to describe the modifi-
cations observed in the temperature dependence of T1z

above the crossover temperature predicted by MD simu-
lations. These results confirm the change from a quasi-free
molecular rotation to a discrete jumps regime at Tx.

The authors thank Dr J. Virlet for providing the NMR mea-
surements at 48 MHz and for the jump model description. The
collaboration with Stelar srl (Italy) for FCNMR experiments
is also acknowledged.
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